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ABSTRACT
Non-textual components such as charts, diagrams and tables pro-
vide key information in many scientific documents, but the lack
of large labeled datasets has impeded the development of data-
driven methods for scientific figure extraction. In this paper, we
induce high-quality training labels for the task of figure extrac-
tion in a large number of scientific documents, with no human
intervention. To accomplish this we leverage the auxiliary data pro-
vided in two large web collections of scientific documents (arXiv
and PubMed) to locate figures and their associated captions in the
rasterized PDF. We share the resulting dataset of over 5.5 million
induced labels—4,000 times larger than the previous largest figure
extraction dataset—with an average precision of 96.8%, to enable
the development of modern data-driven methods for this task. We
use this dataset to train a deep neural network for end-to-end fig-
ure detection, yielding a model that can be more easily extended
to new domains compared to previous work. The model was suc-
cessfully deployed in Semantic Scholar,1 a large-scale academic
search engine, and used to extract figures in 13 million scientific
documents.2
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2A demo of our system is available at http://labs.semanticscholar.org/deepfigures/, and
our dataset of induced labels can be downloaded at https://s3-us-west-2.amazonaws.
com/ai2-s2-research-public/deepfigures/jcdl-deepfigures-labels.tar.gz. Code to run
our system locally can be found at https://github.com/allenai/deepfigures-open.
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1 INTRODUCTION
Non-textual components (e.g., charts, diagrams and tables) provide
key information in many scientific documents. Previous research
has studied the utility of figures in scientific search and information
extraction systems; however, the vastmajority of published research
papers are only available in PDF format, making figure extraction a
challenging first step before any downstream application involving
figures or other graphical elements may be tackled. While some
venues (e.g., PubMed) provide figures used in recently published
documents, it remains a problem for older papers as well as many
other venues which only publish PDF files of research papers.

Recent years have seen the emergence of a body of work focus-
ing on use cases for extracted figures (see Section 2). All of these
downstream tasks rely upon accurate figure extraction. Unfortu-
nately, the lack of large-scale labeled datasets has hindered the
application of modern data-driven techniques to figure and table
extraction.3 Previous work on this task used rule-based methods to
address the problem in limited domains. In particular, [6] extract
figures in research papers at NIPS, ICML and AAAI, and [7] extend
their work to address papers in computer science more generally;
however, stylistic conventions vary widely across academic fields,
and since previous methods relied primarily on hand-designed fea-
tures from computer science papers, they do not generalize well to
other scientific domains, as we show in section 5.

Our main contribution in this paper is to propose a novel method
for inducing high-quality labels for figure extraction in a large
number of scientific documents, with no human intervention. Our
technique utilizes auxiliary data provided in two large web collec-
tions of scientific documents (arXiv and PubMed) to locate each
figure and its associated caption in the rendered PDFs. The resulting
dataset consists of 5.5 million induced labels with an average preci-
sion of 96.8%. The size of this dataset is three orders of magnitude

3For brevity, we use figure extraction to refer to the extraction of both figures and
tables in the remainder of the paper.
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larger than human-labeled datasets available for figure extraction
in scientific documents.

To demonstrate the value of this dataset, we introduce DeepFig-
ures, a deep neural model for detecting figures in PDF documents,
built on a standard neural network architecture for modeling real
world images, ResNet-101. Comparison to prior rule-based tech-
niques reveals better generalization across different scientific do-
mains. Additionally, we discuss a production system for figure ex-
traction built on DeepFigures that is currently deployed in a large-
scale academic search engine (Semantic Scholar)4 which covers
multiple domains, illustrating the practical utility of our proposed
approach.

Our main contributions are:
• We propose a novel method for inducing high-quality labels
for figure extraction in large web collections of scientific
documents.

• We introduce, to the best of our knowledge, the first sta-
tistical model for figure extraction, using a neural network
trained exclusively on our dataset with no human labels.

• We release our figure extraction data, tool, and code for gen-
erating the datasets and extracting figures locally to facilitate
future research in graphical information understanding in
scientific documents.

2 RELATEDWORK
In this section, we discuss two lines of related work in the literature.
The first line focuses on extraction and understanding of figures in
scientific documents, which motivate this work. The second line
reviews related neural models which we build on.

2.1 Scientific Figures
Recent years have seen the emergence of a body of work focus-
ing on applications involving figures in scholarly research papers.
Researchers have considered a range of tasks from extracting the
underlying data from plots [5, 20], to the use of figures in search
engines and broader information extraction systems [4, 24, 26].

Figures are also a common topic of interest in medical domains,
where they often contain graphical images such as radiology imag-
ing. In [26], researchers introduced the system PDFMEF, which
incorporated figures into its extracted information. In [24], re-
searchers classified figures of brain images in order to provide
more relevant information to doctors studying Alzheimer’s Disease.
In [4], researchers present a search engine for figures in chem-
istry journals, allowing scientists to more easily locate information
that may not be expressed in text. Shared tasks such as Image-
CLEF [9, 10] also helped drive more attention to compound figure
detection [29], compound figure separation [23], medical image
annotation [17], among other tasks related to medical images.

All of these downstream tasks rely upon accurate figure ex-
traction. Previous work on this task has focused only on limited
domains; [6] focused only on 3 AI conferences, and [7] concentrated
on papers only within computer science. Stylistic conventions vary
widely across academic fields, and as we show in section 5, features
hand-designed for computer science papers do not generalize well
across other scientific domains.
4https://www.semanticscholar.org

Our method for inducing figure extraction labels can be viewed
as an application of distant supervision, a popular approach for gen-
erating noisy labels in natural language processing tasks. The key
idea is to project known labels from an existing resource to related,
unlabeled instances. For example, [18] used relations between enti-
ties in Freebase [1] to induce labels between pairs of corresponding
entity mentions in unlabeled text, making the strong assumption
that the Freebase relation is described in each sentence where both
entities are mentioned. As will be discussed in the following sec-
tion, the method we propose does not require making such strong
assumptions.

2.2 Neural Models for Computer Vision
The model architecture we use for figure extraction in this paper
leverages the great success of convolutional neural networks on
a variety of computer vision tasks including object recognition
and detection [14], motion analysis [12], and scene reconstruction
[27]. Inspired by the brain’s visual cortex, these networks consist
of millions of neurons arranged in a series of layers that learn
successively higher-level visual representations. For example, when
performing facial recognition, a neuron in the first layer might
detect horizontal edges, a neuron in the second layer might respond
to certain curves, the third layer to an eye, the fourth layer to a
whole face. Recent work has used neural networks for semantic
page segmentation, suggesting that these models can be applied
to synthetic documents as well as natural scenes [3, 13, 28]. In this
section we provide more details on two building blocks we use in
DeepFigures: ResNet-101 and OverFeat.

2.2.1 ResNet-101. An important task in computer vision is ob-
ject recognition: for example, given an image, determine whether
it is a cat or a dog. Using the raw pixels as features poses difficul-
ties for most traditional classification algorithms, due to the sheer
volume of information and the curse of dimensionality. Instead,
computer vision techniques generally extract higher level features
from the image, and then run a standard machine learning clas-
sifier such as logistic regression on these features. Before neural
networks, features were generally hand-engineered by researchers
or practicioners; an example of one common such feature is the
frequencies of edges in various regions of the image [8]. In contrast,
convolutional neural networks learn their feature representations
from the data. This learning is achieved by defining a broad space
of possible feature extractors and then optimizing over it, typically
using backpropagation and stochastic gradient descent. The archi-
tecture of the neural network corresponds to how the neurons are
defined and pass information to each other and it is the neural
network’s architecture that defines the space of possible feature
extractors we might learn.

Numerous highly successful neural network architectures have
been proposed for computer vision [14, 15, 22]. Generally, with
more data and more layers, neural networks tend to get increased
performance. Because of this fact, large-scale datasets and optimiza-
tion methods are key to neural networks’ success. One problem
in training neural networks with many layers is that of vanishing
gradients: as gradients are propagated through successive layers,
they tend to either blow up (causing parameters to quickly diverge

https://www.semanticscholar.org


to infinity during training) or shrink to zero, making training ear-
lier layers difficult. Residual networks (ResNets) [14] address the
problem by adding identity connections between blocks: rather
than each layer receiving as input only the previous layer’s out-
put, some layers also receive the output of several layers before.
These identity connections provide a path for gradients to reach
earlier layers in the network undiminished, allowing much deeper
networks to be trained. An ensemble of ResNet models won the
ImageNet object detection competition in 2015.

Because useful image features transfer well across tasks it is
common to use parts of one neural network architecture in place
of components of another. ResNet-101 [14] provides one such fea-
ture extraction architecture. ResNet-101 is a 101-layer deep neural
network formed by stacking “bottleneck” units consisting of a 1x1
convolutional layer, followed by a 3x3 convolutional layer that
brings down the dimension of the embedding, and then another 1x1
convolutional layer that brings the dimension of the embedding
back up to that of the original input. An identity connection adds
the input of the bottleneck unit into the output of its last layer
before passing it further down the network.

2.2.2 OverFeat. Another common task in computer vision, and
the one in which we are interested in this work, is object detection:
for example, determine the location of all human faces in a given
image. This task can be formalized as predicting a bounding box
that encloses the object while being as small as possible. Object
detection is more complex than classification since rather than
predicting a binary or multiclass label, the model must predict a
variable-length list of bounding box coordinates that may change
in size and shape. The problem can be reduced to classification by
running a classifier on every possible box on the image, but due
to the high computational cost of running neural networks with
millions of parameters this is generally infeasible.

OverFeat [19] introduced the idea of bounding box regression.
Rather than producing a class output, the model can use regression
to predict bounding box coordinates directly. To enable detecting
multiple objects as well as to handle objects in various locations
in the image, the model is run fully-convolutionally, i.e., the entire
model is run on cropped image sections centered on a uniformly
spaced grid of 20x15 points.5 For each cropped region, in order
to extract the feature vectors, OverFeat uses 5 initial layers that
perform convolutions and max pooling. Classification is then per-
formed by two fully connected layers and an output layer from the
feature vectors; while bounding box regression is performed by two
fully connected layers and a final output layer providing 4 numbers
– the coordinates for the predicted bounding box. Each class has its
own output layer to provide a bounding box for that class alone.
The classification result then provides a confidence for each class
and every region in the grid, while the bounding box regression
yields a possible bounding box for that class. Thus, for any class
many bounding boxes are predicted and then later merged.

5Running the model at each point on a grid is significantly less computationally
expensive than running the model on the same number of independent images, because
the convolutional structure of network layers means much of the work on overlapping
regions is redundant and can be shared; see [19] for details.

3 INDUCING FIGURE EXTRACTION LABELS
A key contribution of this paper is a novel method for inducing
high-quality labels for figure extraction in a large number of sci-
entific documents (see Table 1 for dataset statistics). The resulting
dataset is critical for training statistical models for figure extraction,
especially for deep neural networks, e.g., [14]. In order to induce
the labels, we align the figures and tables specified using a markup
languages (e.g., LaTeX) with bounding boxes in the corresponding
PDF files, then use coordinates of the bounding boxes as labeled
data. The following subsections provide details on how to do this
alignment using two markup languages commonly used in the
scientific literature: LaTeX and XML.

3.1 Aligning Figures in LaTeX Documents
Many researchers use LaTeX to typeset scientific documents, be-
fore compiling them into PDFs.6 In LaTeX, figures and tables are
specified using standard commands such as \includegraphics.
We modify the way figures render in the compiled PDF file by
adding special instructions in the header section of LaTeX source
files which results in drawing a rectangle around each figure and
table in the rendered PDF file. We then use the pixel-by-pixel im-
age difference between the original and modified versions of the
rendered PDF file to identify the bounding boxes of each figure, as
illustrated in Fig. 1.

Unlike plain text, which may be separated by line and page
breaks at the compiler’s discretion, figures and tables need to be
represented in contiguous blocks of space. To handle these graphical
elements, LaTeX uses the concept of “floats”. Floats are not part
of the normal stream of text, but are instead placed at a location
determined by the LaTeX compiler. Floats also include a caption
to describe them and a name (e.g. “Figure 1.”), allowing them to be
referenced from elsewhere in body text.

Labeling figures and tables:
We add the following commands to the header section of the

LaTeX source file to surround each figure and table with a bounding
box in the compiled PDF file:
\usepackage{color}
\usepackage{floatrow}
\usepackage{tcolorbox}

\DeclareColorBox{figurecolorbox}{\fcolorbox{red}{white}}
\DeclareColorBox{tablecolorbox}{\fcolorbox{yellow}{white}}

\floatsetup[figure]{framestyle=colorbox,
colorframeset=figurecolorbox, framearound=all,
frameset={\fboxrule1pt\fboxsep0pt}}

\floatsetup[table]{framestyle=colorbox,
colorframeset=tablecolorbox, framearound=all,
frameset={\fboxrule1pt\fboxsep0pt}}

We use different colors for figures and tables, in order to differ-
entiate these types automatically. Recompiling and computing the
image difference between the modified and the original PDF files

6We use the term LaTeX to refer to the formal language used to describe a document’s
content, structure and format in TEX software distributions.



Figure 1: Modifying LaTeX source to recover figure positions. Figure bounding boxes are shown in red, figure names in green,
and captions in blue. Left: original document. Middle: document compiled from modified source. Right: image difference
between original and modified documents.

yield blank pages containing only the boxes.7 We can then locate
boxes by finding all connected regions of non-blank pixels and then
taking the minimum and maximum x and y coordinates of each.

Labeling captions:
In order to find the coordinates of the bounding box for caption

text, we modify the color of figure names and captions using the
following command:

\usepackage[labelfont={color=green},
textfont={color=blue}]{caption}

Finally, we modify the coordinates of the bounding box of each
figure and table to exclude the caption, by identifying the largest
rectangular region inside the float that contains no caption text.
This is robust even to uncommon caption locations (e.g., above a
table, or to the side of a figure).

arXiv:
In order to construct our dataset, we download LaTeX source

files from arXiv,8 a popular platform for pre-publishing research in
various fields including physics, computer science, and quantitative
biology. When authors make a paper submission to arXiv, they are
required to upload source files if the paper is typeset using LaTeX.
As of the time of writing, arXiv hosts over 900,000 papers with
LaTeX source code.

7The added border shifts figure positions by a few pixels, so we use the same command
to add white borders to figures in the original to make them align exactly.
8https://arxiv.org/

3.2 Aligning Figures in XML Documents
We would like our dataset to cover a diverse set of scientific do-
mains. Although LaTeX is widely used in some fields (e.g., statistics,
physics, computer science, etc.), it has been less popular in impor-
tant domains such as themedical and life sciences whereWYSIWYG
editors (e.g., Microsoft Word) are more common. As a result, we
cannot use the method described in section 3.1 to induce a large
labeled dataset in these fields.

PubMed:
Fortunately, however, some publishers provide XML markup for

their papers, which can also be used to induce figure extraction
labels. In particular, PubMed Central Open Access Subset is a free
archive of medical and life sciences research papers. The National
Center for Biotechnology Information (NCBI) makes this subset
available through bulk downloading. In addition to the PDF files,
it provides auxiliary data to improve the user experience while
reading a paper. The auxiliary data includes the paper text marked
up with XML tags (including figure captions) as well as image files
for all graphics.

In principle, this data can be used to induce labels for figure
extraction. However, unlike LaTeX documents, the XML markup
cannot be used to compile the PDF. Therefore, we propose a differ-
ent approach to recover the positional information of figures.

Labeling captions:
First, for each image in the auxiliary data, we determine which

page in the corresponding PDF file contains this figure by searching
the PDF text (extracted by a tool such as PDFBox) for the caption
text (which is also available in the auxiliary data). Since the XML

https://arxiv.org/


and PDF text do not always match exactly (e.g., em dash in PDF
vs. a hyphen in XML), we use dynamic programming to find the
substring in the PDF text with smallest Levenshtein distance to
the caption text in the XML file. We modify the standard Wagner-
Fischer dynamic programming algorithm for edit distance [25] by
setting the cost for starting (and ending) at any position in the PDF
text to 0. This modification maintains the time complexity ofO(mn),
wherem and n are the string lengths.

Labeling figures:
Once we have identified the page that a figure is on, we render

that page as an image and then use multi-scale template matching
[2] to find the position of the figure on the page. We use the figure
image as a filter and cross-correlate it with the page to produce
a spatial map of image correlations. Template matching is typi-
cally done using image representations such as edge detections or
oriented gradients [2], but because we do not have to deal with
typical conditions present in natural images such as variations
in lighting or pose, we find that template matching in raw pixel
space works best. We use OpenCV’s matchTemplate implementa-
tion with the similarity metric CV_TM_CCOEFF_NORMED, matching at
45 scales where the figure’s largest dimension relative to the page
takes up between 10% and 95% of the page.

In rare cases, the provided figure images do not match the fig-
ures as they appear in the PDF (e.g., subfigures may be laid out
horizontally on the PDF but vertically in the provided image file). If
template matching yields a similarity below 0.8 for any figure, we
exclude the paper from our dataset to reduce the risk of inaccurate
training data.

Labeling tables:
Tables are sometimes provided as images in the same way fig-

ures are. However, it is more common for tables to be represented
directly in the XML with tags for each table cell. We first tried using
the textual edit distance to identify table coordinates in the PDF
file (similar to captions), but we found that the order of table cells
often differs between PDFBox’s extracted text and the XML (e.g.
table cells may be extracted from the PDF in column-major order
while the XML is row-major). Therefore, we instead use a bag of
words similarity.

We find the token sequence in the PDF that has the highest
similarity to the set of words in the XML table. We can find the
optimal sequence in the PDF text efficiently by maintaining a word
difference counter. For a given start position in the PDF stream, we
initialize the counter to the bag of words from the XML table. For
each token following this position, we decrement the counter for
the word at the current position (while allowing negative counts
to represent words that occur more in the PDF than in the XML).
This procedure is repeated for each start position on the PDF page.
The following pseudo-code illustrates our algorithm for finding the
interval on the page with the lowest bag-of-words distance to the
table:
best_dist <- math.inf
for start_word in page_words:

diff_counter <- table_words
cur_dist = sum(table_words)

Dataset Manually-labeled Induced labels
name CS-Large [7] PubMed LaTeX XML
# papers 346 104 242,041 791,381
# figures 952 289 1,030,671 3,064,951
# tables 282 124 164,356 1,267,464

Table 1: Number of papers, figures, and tables in the
manually-labeled datasets (left) and our datasets of induced
labels (right).

for end_word in page_words from start_word:
diff_counter[end_word] -= 1
if diff_counter[end_word] >= 0:

cur_dist -= 1
else:

cur_dist += 1
if cur_dist < best_dist:

best_dist <- cur_dist
store start_word and end_word positions

Ifm is the length of the XML table and n is the length of the PDF,
generating or copying the initial word counter isO(m) and iterating
over ending words on the PDF text is O(n). Both of these occur for
every starting word, for a total time complexity ofO(n(n +m)). We
identify the minimum axis-aligned bounding box containing all
caption tokens as the table caption region.

3.3 Comparison to Manual Annotation
In this section, we proposed a method for automatically inducing
labeled data for figure extraction in scientific documents. An al-
ternative approach is to train annotators to sift through a large
number of research papers and label figure and table coordinates
and their captions. While this approach typically results in high
quality annotations, it is often impractical. Manual annotation is
slow and expensive, and it is hard to find annotators with appropri-
ate training or domain knowledge. With limited time and budget,
the size of labeled data we can collect with this approach is modest.9

Scalability of induced labels:
In contrast to manual annotation, our proposed method for in-

ducing labels is both scalable and accurate. We compare the size of
our datasets with induced labels to that of manually labeled datasets
in Table 1. We compare with two manually labeled datasets:

• The “CS-Large” dataset [7]: To our knowledge, this was pre-
viously the largest dataset for the task of figure extraction.
Papers in this dataset were randomly sampled from com-
puter science papers published after the year 1999 with nine
citations or more.

9Another alternative is to use crowdsourced workers (e.g., using Amazon Mechanical
Turk https://www.mturk.com/ or CrowdFlower http://www.crowdflower.com/) to do
the annotation. Although crowdsourcing has been successfully used to construct
useful image datasets such as ImageNet [11], [20] found that crowdsourcing figure
annotations in research papers yielded low inter-annotator agreement and significant
noise due to workers’ lack of familiarity with scholarly documents.

https://www.mturk.com/
http://www.crowdflower.com/
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Figure 2: Distributions of figures (left) and tables (right) in our automatically generated datasets. X-axis shows number of
figures/tables per paper. Y-axis shows fraction of papers with that many figures/tables. Differences are likely a result of the
differing source datasets: for example, the life science papers found in PubMedmay relymore on tables to convey information
than math papers on arXiv.

Dataset LaTeX XML
Figures Tables Figures Tables

Precision 1.00 1.00 0.97 0.94
Recall 0.95 1.00 0.91 0.94
F1 0.97 1.00 0.94 0.94

Table 2: Precision, recall and F1 score of induced labels in
the “LaTeX” and “XML” datasets.

• The “PubMed” dataset: We collected this dataset by sampling
papers from PubMed, and hired experts in biological sciences
to annotate figures and tables, and their captions.

Both manually labeled datasets are used as test sets in our experi-
ments (section 5). Notably, both of our datasets with induced labels
“LaTeX” and “XML” are three orders of magnitude larger than “CS-
Large”.

Accuracy of induced labels:
In order to assess the accuracy of labels induced using our

method, we collected human judgments for a sample of papers
in the “LaTeX” and “XML” datasets. Table 2 reports the precision
and recall of figures and tables, including captions, for 150 pages
in 61 papers in the “LaTeX” dataset and 106 pages in 86 papers in
the “XML” dataset. We require that the four corners of a figure (or
table) and the four quadrants of its caption must be correct for each
true positive data point. As shown in Table 2, the quality of induced
labels are fairly high (e.g., the F1 score of induced labels ranges
between 93.9% and 100%).

The following section discusses the model we developed in order
to consume the induced labeled data described in this section.

4 THE DEEPFIGURES MODEL
Our system takes as input a PDF file, which we then render as a list
of page images, and feed each page to our figure detection neural
network. The network architecture we use for figure extraction is a

slight variant of several standard neural network architectures for
image classification and object detection. In particular, our model
is based on TensorBox [21], applying the OverFeat detection archi-
tecture [19] to image embeddings generated using ResNet-101 [14].
This object detector then finds bounding boxes for figures in the
PDF, and captions are extracted separately.

In contrast to OverFeat, which uses a relatively shallow 5-layer
network to generate the spatial feature grid, we use ResNet-101
which enables higher model capacity and accuracy. Additionally,
while OverFeat trained the embedding network on a classification
task and then fixed those weights while training localization, learn-
ing only the weights for the final regression layer, we train the
full network end-to-end, allowing the embedding network to learn
features more relevant to localization and eliminating the need for
pre-training.

As illustrated in Figure 3, in the network we use for figure extrac-
tion each grid cell is represented by 1024 features extracted from
the ResNet-101 model, resulting in a 20x15x1024 spatial feature grid.
At each grid cell, the model uses these features to predict both a
bounding box and a confidence score. Boxes with confidence score
above a selected threshold are returned as predictions. Figure 4
illustrates the architecture in more detail.

Matching Captions:
The OverFeat-ResNet figure detection model outputs a set of

bounding boxes for figures; however, many applications, including
academic search, benefit most from having a set of figure-caption
pairs for the PDF. Our figure extraction pipeline extracts captions’
text and bounding boxes using the same method as [7], finding
paragraphs starting with a string that matches a regular expres-
sion capturing variations of “Figure N.” or “Table N.” and then
locating the identified textual elements in the page using standard
PDF processing libraries. Once we have a list of proposed cap-
tions, we match figures to captions in order to minimize the total
euclidean distance between the centers of paired boxes. This is
an instance of the linear assignment problem and can be solved
efficiently using the Hungarian algorithm [16]. If there are more
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Figure 3: High-level structure of the DeepFigures model. The input to the model is a 640x480 page image. ResNet-101 is run
fully-convolutionally over the image, yielding a 20x15 spatial grid of 1024-dimensional image embedding vectors. Next, re-
gressions to predict box coordinates and confidences are run on each of the 300 grid cells, yielding 300 candidate bounding
boxes. Running non-maximum suppression and filtering out predictions with confidences below a threshold yields the final
predictions.

detected figures than captions or vice-versa, the algorithm picks the
min(figure count, caption count) pairs that minimize total distance.
See [7] for more details on matching captions.

Both of the data generation methods described in section 3 pro-
duce bounding boxes for captions as well as figures, so in principle
the captions could also be detected using a neural network. In our
experience, however, training the model to predict captions reduced
performance. There are a few likely causes: captions are often very
small along the height dimension, amplifying small absolute errors
in bounding box coordinates. Similarly, captions have fewer visual
cues and are much less distinct from surrounding text than figures.
Finally, the baseline caption detection model from [6] performs very
well. Most errors in PDFFigures 2.0 are caused by figure detection
error rather than caption detection. For these reasons, we continue
to use the rules-based approach for detecting captions.

To summarize how our model combines the previously men-
tioned components, the model generates a 20x15 spatial grid of
image embedding vectors with each embedding vector having 1024
dimensions generated using ResNet-101 [14]. The feature vectors
are then input into a linear regression layer with two outputs that
represent the four coordinates of the bounding box. Simultaneously,
the feature vectors are passed through a logistic regression layer to
predict the confidence that each grid cell is at the center of a figure.
Redundant boxes are eliminated via non-maximum suppression.
At test time, we run inference with a confidence threshold of 50%,
although this parameter may be tuned to favor precision or recall
if needed.

5 EXPERIMENTS
In this section, we compare the DeepFigures model described in
section 4 to PDFFigures 2.0 [7], the previous state of the art for the
task of figure extraction.

Data:
We train the DeepFigures model on 4,095,622 induced figures

(1,030,671 in the LaTeX dataset and 3,064,951 in the XML dataset)
and 1,431,820 induced tables (164,356 in the LaTeX dataset and
1,267,464 in the XML dataset). See section 3 for more details on the
two datasets.

When using any algorithmically generated dataset, the question
arises of how to ensure that the model is really learning something
useful, rather than simply taking advantage of some algorithmic
quirk of the generating process. Therefore, we perform evaluation
entirely on human annotated figures. The algorithm is trained
entirely on synthetic data and tested entirely on human labeled
data, so our high performance demonstrates the quality of our
distantly supervised dataset.

We run evaluation on two datasets: the “CS-Large” computer
science dataset introduced by [7], and a new dataset we introduce
using papers randomly sampled from PubMed. Our new dataset,
consisting of 289 figures and 124 tables from 104 papers, was anno-
tated by experts in biological sciences.

Hyperparameters:
We use RMSProp as our optimizer with initial learning rate 0.001.

We train for 5,000,000 steps, decaying the learning rate by a factor
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Figure 4: Architecture of the DeepFigures network ex-
pressed fully convolutionally. Note that a 1x1 convolution is
equivalent to a fully connected layer run at each point on a
spatial grid. Strides are 1where not specified and all convolu-
tional layers except those outputting predictions use ReLU
activations. See [14] for the full ResNet-101 architecture.

of 2 every 330,000 steps. We use a batch size of 1 during training and
did not observe significant performance gains from larger batches,
likely due to the inherent parallelism in sliding window detection.

Evaluation Methodology:
Our evaluation methodology follows that of [7]. A predicted box

is evaluated against a ground truth box based on Jaccard index,

System CS-Large PubMed
PDFFigures 2.0 [7] 87.9% 63.5%
DeepFigures (Ours) 84.9% 80.6%

Table 3: F1-scores for figure extraction systems on human
labeled datasets. In keeping with [7], a predicted bounding
box is considered correct if its IOU (intersection over union)
with the true box is at least 0.8.

also known as intersection over union (IOU): the area of their
intersection divided by the area of their union. As in [7], a predicted
figure bounding box is considered correct if its IOU with the true
box exceeds .80, while a predicted caption box is considered correct
if its IOU exceeds .80 or if the predicted caption text matches the
text from the true region extracted from the PDF. However, while
[7] required annotations to include the figure number in order to be
matched with predictions, we eliminate this requirement in order
to simplify the human annotation task. Instead, we find the optimal
assignment of predicted figures to true figures for each page, which
is an instance of the linear assignment problem and can be done
efficiently using the Hungarian algorithm.

Results:
As shown in Table 3, DeepFigures underperorms by 3 F1 points

on “CS-Large”, but achieves a 17 point improvement on the “PubMed”
dataset. Given that PDFFigures 2.0 is a rule-based method that was
tuned specifically for the “CS-Large” test set, it is unsurprising to
see that it works better than DeepFigures for this domain.

Since DeepFigures does not use any human annotation or do-
main specific feature engineering, it has learned a robust model
for identifying figures across a variety of domains. For example,
PDFFigures 2.0 often generates false positives for graphical headers
which are visually distinct from actual figures, however, allowing
our model to correctly reject them.

6 EXTRACTING FIGURES IN PRODUCTION
One of the primary applications for figure extraction is academic
search. The system we described for figure extraction has been
deployed at scale in the Semantic Scholar search engine10 to power
the figures it serves along with other metadata from research papers.
Currently, Semantic Scholar indexes more than 30 million research
papers; it extracts and serves figures for 13 million of those papers,
that is, the subset of papers which both allow figure extraction and
have a PDF. Using a system built upon the techniques outlined in
this paper, 96% of the 13 million papers were successfully extracted
allowing Semantic Scholar to index 4.5 figures (or tables) for each
paper on average.

The deployed system distributes the figure extractionwork across
numerous machines using a job queue. Each machine runs multiple
worker processes which perform the following tasks:

(1) Retrieve a unique identifier for a paper from the job queue.
(2) Pull the paper down from S3.11

10www.semanticscholar.org
11Simple Storage Service, AWS’s highly scalable object store.



Figure 5: Deployment architecture for the Deepfigures ser-
vice.

(3) Run the DeepFigures library’s figure extraction code locally
to detect figures and extract captions.

(4) Crop the figures out of the rendered PDFs using the detected
bounding boxes.

(5) Upload the detection results and cropped images into S3 for
further processing.

Once the cropped figures along with a JSON file describing the
extraction results are in S3, they can be picked up by another data
processing system such as Apache Spark for further transforma-
tions or indexing. In Semantic Scholar, this post-processing involves
transforming the extraction results and indexing the figure meta-
data in Elasticsearch. From Elasticsearch, figures attached to a paper
may be retrieved and their corresponding images served on the site
directly from S3.

Due to the demanding computational requirements of the neural
network models we use for figure detection, the use of GPU-capable
machines can greatly accelerate the extraction process. The combi-
nation of I/O, network calls, rendering of PDFs, extracting captions
from PDFs and neural network inference means that in order to
fully utilize the GPU, CPU and network resources, it’s helpful to
run multiple processes extracting figures on one machine. In par-
ticular, the deployed system uses g2.xlarge instances in AWS EC2
with 8 worker processes to balance GPU and CPU requirements.
Through AWS CloudFormation, the instance type is kept as a con-
figuration option. The ability to configure the instance type, and
other hardware decisions, enabled fast iteration to find a setup that
properly balanced CPU, GPU and network resources. Such experi-
mentation was crucial to finding machines with high throughput
at a reasonable price.

Ultimately, the system is able to extract the figures from 15
papers per minute per machine and can scale horizontally. Running
a single 12 page PDF through the whole pipeline, from queueing
the paper through rendering and extraction, takes about 45 seconds.
When the system is running at full speed, each paper takes around
30 seconds on average to be processed.

7 CONCLUSION
In this work, we present a novel method for inducing high-quality la-
bels for figure extraction in scientific documents. Using this method,

we contribute a dataset of 5.5 million induced labels with high ac-
curacy, enabling researchers to develop more advanced methods
for figure extraction in scientific documents.

We also introduce DeepFigures, a neural model for figure ex-
traction trained on our induced dataset. DeepFigures has been
successfully used to extract figures in 13 million papers in a large-
scale academic search engine, demonstrating its scalability and
robustness across a variety of domains.

Future work includes training a model to perform the full task
of figure extraction end-to-end, including detecting and matching
captions. This task could be aided by providing the network with
additional information available from the PDF other than the ren-
dered image, e.g. the locations of text and image elements on the
page. Additionally, our data generation approaches could be ex-
tended to other information about papers such as title, authors, and
sections; the distinctive visual characteristics of these elements as
they appear in papers suggests neural detection models could be
potentially useful.
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